Energy Performance of the Iberoamerican Architecture
Theoretical and Methodological Basis for Classification and Evaluation
Keywords:
architectural types, urban types, Ibero-America, energy performanceAbstract
The energy performance of architecture, which depends on its passive design, is essential for achieving Sustainable Development Goal 11, although it is a topic rarely addressed in Latin America, particularly in self-built popular housing. This work, carried out by the CYTED REDENARQUI network, aimed to establish common theoretical and methodological foundations for characterizing, classifying, and evaluating Ibero-American architecture according to its energy performance. This theoretical phase combines documentary research and the experience of each working group with a collective discussion of the findings. The results include the variables to consider in identifying architectural and urban types in the region and the procedures for evaluating them based on the annual percentage of hours of discomfort each type generates. These results will serve as benchmarks for new architecture and the renovation processes of built heritage in the Ibero-American region, to be explored in the next stages of research.
References
Chirag D, Siew E. Determining key variables influencing energy consumption in office buildings through cluster analysis of pre- and post-retrofit building data. Energy Build [Internet]. 2018 [cited: December 20, 2024]; 159:228-245. Available from: https://doi.org/10.1016/j.enbuild.2017.11.007.
Loga T, Stein B, Diefenbach N. TABULA building typologies in 20 European countries—Makingenergy-related features of residential building stocks comparable. Energy and Buildings 132 (2016) 4–12. http://dx.doi.org/10.1016/j.enbuild.2016.06.094.
López-Moreno H, Núñez-Peiró M, Sánchez-Guevara C, Neila J. On the identification of Homogeneous Urban Zones for the residential buildings’ energy evaluation. Building and Environment [Internet]. 2022 [cited: December 20, 2024]; 207(Part B):108451. Available from: https://doi.org/10.1016/j.buildenv.2021.108451.
González Couret D, Collado Baldoquin N, Paz Pérez GAdl, Rueda Guzmán LA. Urban variables for adaptation to global warming in a hot-humid climate. Cuban cities as a case study. Urban Climate [Internet]. 2023 [cited: December 20, 2024]; 51:101633. Availablefrom: https://doi.org/10.1016/j.uclim.2023.101633.
González D, Collado N, Gelabert D, Morales LY, Rueda LA. Adaptación del hábitat urbano al calentamiento global en La Habana. Propuestas de transformación. Arquitectura y Urbanismo [Internet]. 2024 [consultado: 20 de diciembre de 2024]; 45(2):28-44. Disponible en: https://rau.cujae.edu.cu/index.php/revistaau/article/view/835.
Ruiz G, Hernández E. Urbanización y edificación de bajo costo. Volumen 3: Política de vivienda en Cuba. Documentos. Madrid: Cooperación Española-SUR; 1998.
Orden de 26 de abril de 1999, del conseller de Obras Públicas, Urbanismo y Transportes, por la que se aprueba el Reglamento de Zonas de Ordenación Urbanística de la Comunidad Valenciana [1999/1.3917]. DOGV Diari Oficial de la Generalitat Valenciana, nº. 3.488, (5 de mayo de 1999), p.7122-7158. Disponible en: https://dogv.gva.es/datos/1999/05/05/pdf/1999_3917.pdf.
Olgyay V. Arquitectura y Clima. Manual de Diseño Bioclimático para Arquitectos y Urbanistas. Barcelona: Gustavo Gili; 2019. Disponible en: https://editorialgg.com/media/catalog/product/9/7/9788425214882_inside.pdf.
Givoni B. Climate Considerations in Building and Urban Design. New York: Van NostrandReinhold; 1998.
Koenigsberger OH. Viviendas y edificios en zonas cálidas y tropicales. Madrid: Pananinfo; 1977. [Consultado: 20 de diciembre de 2024]. Disponible en: https://catalogosiidca.csuca.org/Record/UP.101982.
González Sandino R, López de Asiaín J. Análisis bioclimático de la arquitectura. Sevilla: Escuela Técnica Superior de Arquitectura; 1994.
Serra R, Coch H. Arquitectura y Energía Natural. Barcelona: Universidad Politécnica de Cataluña; 2001.
Palusci O, Cecere C. Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas. Sustainability [Internet]. 2022 [cited: December 20, 2024]; 14(7):3948. Available from: https://doi.org/10.3390/su14073948.
Wang P, Liu Z, Zhang L. Sustainability of compact cities: A review of Inter-Building Effect on building energy and solar energy use. Sustainable Cities and Society [Internet]. 2021 [cited: December 20, 2024]; 72:103035. Available from: https://doi.org/10.1016/j.scs.2021.103035.
Quan SJ, Li C. Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies. Renewable and Sustainable Energy Reviews [Internet]. 2021 [cited: December 20, 2024]; 139(2):110662. Available from: https://doi.org/10.1016/j.rser.2020.110662.
Asfour OS, Alshawaf ES. Effect of housing density on energy efficiency of buildings located in hot climates. Energy and Buildings [Internet]. 2015 [cited: December 20, 2024]; 91:131-138. Available from: http://dx.doi.org/10.1016/j.enbuild.2015.01.030.
Hachem C, Singh K. Optimization of the mixture of building types in a neighbourhood and their energy and environmental performance. Energy and Buildings [Internet]; 2019 [cited: December 20, 2024]; 204:109499. Available from: https://doi.org/10.1016/j.enbuild.2019.109499.
Song D, Han S. The Analysis of Reactive Factors between Architectural Envelop Condition and Urban Microclimate. Procedia Engineering [Internet]. 2016 [cited: December 20, 2024]; 169:125-132. Available from: https://doi.org/10.1016/j.proeng.2016.10.015.
Guo C, Buccolieri R, Gao Z. Characterizing the morphology of real street models and modelling its effect on thermal environment. Energy and Buildings [Internet]. 2019 [cited: December 20, 2024]; 203:109433. Available from: https://doi.org/10.1016/j.enbuild.2019.109433.
Martins T, Adolphe L, Gonçalves Bastos LE. From solar constraints to urban design opportunities: Optimization of built form typologies in a Brazilian tropical city. Energy and Buildings [Internet]. 2014 [cited: December 20, 2024]; 76:43-56. Available from: http://dx.doi.org/10.1016/j.enbuild.2014.02.056.
Allegrini J, Dorer V, Carmeliet J. Influence of morphologies on the microclimate in urban neighbourhoods. J Wind Eng Ind Aerodyn [Internet]. 2015 [cited: December 20, 2024]; 144:108-117. Available from: http://dx.doi.org/10.1016/j.jweia.2015.03.024.
Quan J, Wu J, Wang Y, Shi Z, Yang T, Yang PP-J. Urban Form and Building Energy Performance in Shanghai Neighborhoods. Energy Procedia [Internet]. 2016 [cited: December 20, 2024]; 88(1):126-132. Available from: http://dx.doi.org/10.1016/j.egypro.2016.06.035.
Sulaiman HC, Sipowicz E, Filippin MC, Oga LM. Energy Performance of Dwellings in a Temperate Climate Area of Argentina. An Architectural Proposal. Open Construction and Building Technology Journal [Internet]. 2020 [cited: December 20, 2024]; 14(1):1-16. Available from: http://dx.doi.org/10.2174/1874836802014010001.
Bogin D, Kissinger M, Ereli E. Metrics matter: An integrated approach for analyzing household electricity consumption and the potential for conservation. Energy and Buildings [Internet]. 2024 [cited: December 20, 2024]; 307(6):113851. Available from: http://dx.doi.org/10.1016/j.enbuild.2023.113851.
Santamouris M, Kapsis K, Korres D, Livada I, Pavlou C, Assimakopoulos MN. On the relation between the energy and social characteristics of the residential sector. Energy and Buildings [Internet]. 2007 [cited: December 20, 2024]; 39(8):893-905. Available from: http://dx.doi.org/10.1016/j.enbuild.2006.11.001.
González Couret D. Ciudad inclusiva. El reto se mantiene para la sustentabilidad pospandemia. Área [Internet]. 2022 [consultado: December 20, 2024]; 28(1):1-13. Disponible en: http://publicacionescientificas.fadu.uba.ar/index.php/area/article/view/1998.
Arébalo M, Bazoberry G, Blanco C, Díaz S, Fernández R, Florian A, et al. El Camino Posible. Producción Social del Hábitat en América Latina Montevideo: Trilce; 2011. Disponible en: https://www.hic-net.org/es/el-camino-posible-produccion-social-del-habitat-en-america-latina/.
Ortiz Flores E. Producción Social de la vivienda y el hábitat. Bases conceptuales y correlación con los procesos habitacionales. México: Hic-Al; 2012. Disponible en: https://hic-al.org/2018/12/28/produccion-social-de-la-vivienda-y-el-habitat-bases-conceptuales-y-correlacion-con-los-procesos-habitacionales/.
Salvarredy JR. El proyecto urbano inclusivo como instrumento de la gestión territorial [tesis doctoral]. Buenos Aires: Universidad de Buenos Aires, Facultad de Arquitectura, Diseño y Urbanismo; 2021. Disponible en: http://repositoriouba.sisbi.uba.ar/gsdl/cgi-bin/library.cgi?a=d&c=aaqtesis&cl=CL1&d=HWA_5693
Pelli VS. Habitar, participar, pertenecer, acceder a la vivienda, incluirse en la sociedad. Buenos Aires: Nobuko; 2007.
Driant JC, Riofrío G. ¿Qué vivienda han construido? Lima: Institutfrançaisd’étudesandines, Centro de Investigación, Documentación y Asesoría Poblacional, TAREA. Asociación de Publicaciones Educativas; 1987.
Cravino MC. Las villas de la ciudad. Mercado e informalidad urbana. Buenos Aires: Universidad Nacional de General Sarmiento; 2006.
UNE-EN 15251:2008. Parámetros del ambiente interior a considerar para el diseño y la evaluación de la eficiencia energética de edificios incluyendo la calidad del aire interior, condiciones térmicas, iluminación y ruido Madrid: AENOR Asociación Española de Normalización y Certificación; 2008. [Consultado: 20 de diciembre de 2024]. Disponible en: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0041732.
ASHRAE. ANSI/ASHRAE Standard 55-2004. Thermal Environmental Conditions for Human Occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers; 2004. [Cited: December 20, 2024]. Available from:https://www.ditar.cl/archivos/Normas_ASHRAE/T0080ASHRAE-55-2004-ThermalEnviromCondiHO.pdf.
International Energy Agency. Building envelopes. IEA. 2022 [update: July, 11 2023; cited: December 20, 2024]. Available from: https://www.iea.org/energy-system/buildings/building-envelopes.
Aqilah N, Bahadur Rijal H, Ahmad Zaki S. A Review of Thermal Comfort in Residential Buildings: Comfort Threads and Energy Saving Potential. Energies [Internet]. 2002 [cited: December 20, 2024]; 15(23):9012. Available from: https://doi.org/10.3390/en15239012.
Fedorczak-Cisak M, Furtak M, Radziszewska-Zielina E. (2019). Certification of “Nearly Zero-Energy Buildings” as a Part of Sustainability. IOP Conference Series: Earth and Environmental Science [Internet]. 2019 [cited: December 20, 2024]; 222:012020. Availablefrom: https://doi.org/10.1088/1755-1315/222/1/012020
Bienvenido-Huertas D, Carretero-Ayuso MJ, Rodríguez-Jiménez CE, Marín-García D, Moyano J. Análisis de la influencia del coeficiente de transferencia de calor en la caracterización de la transmitancia térmica de fachadas con el método termométrico. Informes de la Construcción [Internet]. 2021 [consultado: December 20, 2024]; 73(563):e49. Disponible en: https://doi.org/10.3989/ic.82602.
Babiarz B, Szymański W. Introduction to the Dynamics of Heat Transfer in Buildings. Energies [Internet]. 2020 [cited: December 20, 2024]; 13(23):6469. Available from: https://doi.org/10.3390/en13236469.
Min-Hwi K, Jin-Hyo K, Oh-Hyun K, An-Seop C, Jae-Weon J. Overall Heat Transfer Coefficient of a Korean Traditional Building Envelope Estimated Through Heat Flux Measurement. Journal of Asian Architecture and Building Engineering [Internet]. 2011 [cited: December 20, 2024]; 10(1):263-270. Available from: https://doi.org/10.3130/jaabe.10.263.
Burdick A. Strategy Guideline: Accurate Heating and Cooling Load Calculations. Technical Report OSTI ID: 1018100. US Department of Energy, Office of Science, Office of Scientific and Technical Information; 2011. [Cited: December 20, 2024]. Availablefrom: https://www.osti.gov/biblio/1018100.
Código Técnico de la Edificación. Real Decreto 314/1006 de 17 de marzo. Agencia Estatal Boletín Oficial del Estado, nº 74, (28-03-2006), p.11816-11831. Ministerio de Vivienda. Gobierno de España. Disponible en: https://www.boe.es/eli/es/rd/2006/03/17/314.

Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
a. The authors retain the copyright and guarantee the magazine the right to be the first publication of the work as well as a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the authorship of the work and the initial publication in this magazine.
b. Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are allowed and encouraged to disseminate their work electronically (for example, in institutional repositories or on their own website) before and during the submission process, as it can lead to productive exchanges, as well as a more early and major published papers (See The Effect of Open Access, in English).