Adaptation of Urban Habitat to Global Warming in Havana. Transformation Proposals
Keywords:
morphological types, thermal microclimate, adaptation to global warming, HavanaAbstract
This article presents the most recommended transformation strategies for a better adaptation to global warming according to the results of a research aimed at identifying, characterizing and evaluating the morphological types in Havana according to its thermal microclimate. Based on the theoretical framework developed in the first stage of the work, empirical research was conducted, allowing the identification of 27 morphological types in the city, of which 12 were selected for the development of 3 thermal environment monitoring campaigns. From the results, the morphological types were further classified into four large groups, according to their microclimatic behavior, as a basis for the identification of the main transformation strategies to be proposed in each case. The impact of some proposed solutions was simulated with ENVImet software, previously validated against the monitored values.
References
CEPAL (Comisión Económica para América Latina y el Caribe) / CAC-SICA (Consejo Agropecuario Centroamericano del Sistema de la Integración Centroamericana) (2020), Análisis espacial de datos históricos y escenarios de cambio climático en México, Centroamérica, Cuba, Haití y la República Dominicana. Ciudad de México: CEPAL; 2020. Disponible en: https://hdl.handle.net/11362/46499.
IPCC (Intergovernmental Panel on Climate Change). Climate Change 2022. Mitigation of Climate Change. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available in: https://www.ipcc.ch/report/ar6/wg2/
Planos Gutiérrez EO. Informe: Tercera Comunicación Nacional a la Convención Marco de las Naciones Unidas sobre Cambio Climático. La Habana: CITMA / AMA; 2020,
ONU (Organización de Naciones Unidas) El futuro de la humanidad se juega en las ciudades. Noticias ONU [Internet]. 26 Febrero 2019 [consultado: 10 de julio de 2024]. Disponible en: https://news.un.org/es/story/2019/02/1451862.
Gilabert Mestre J. Cubiertas urbanas y comportamiento térmico en escenarios de temperaturas extremas del dato al geoservicio [tesis doctoral]. Barcelona: Universitat de Barcelona; 2021. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=304379.
Arellano Ramos B. Cambio climático, planeamiento y urbanismo. En: CTV XIII Congreso Internacional Ciudad y Territorio Virtual. Barcelona: Universitat Politècnica; 2019. Disponible en: https://revistes.upc.edu/index.php/CTV/article/view/9651.
Estrada F, Botzen WJW, Tol RSJ. A global economic assessment of city policies to reduce climate change impacts. Nature Climate Change [Internet]. 2017 [cited: month day, year]; 7(6): 403-406. Disponible en: https://doi.org/10.1038/nclimate3301.
Wouters H, De Ridder K, Poelmans L, Willems P, Browers J, Hosseinzadehtalaei P, et al. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophysical Research Letters [Internet]. 2017 [cited: July 10, 2024]; 44(17): 8997-9007. Disponible en: https://doi.org/10.1002/2017GL074889.
Sánchez Solís A. El calentamiento global afectará a las ciudades el doble que al campo. La Vanguardia. Sociedad. Cambio Climático [Internet]. 24 Abril 2017 [consultado: 10 de julio de 2024]. https://www.efe.com/efe/america/sociedad/el-calentamiento-global-afectara-a-las-ciudades-doble-que-al-campo/20000013-3246785
Ijjasz-Vasquez E, Saghir J, Noble I. State and Trends in Adaptation Report 2021 [Internet]. Global Center on Adaptation. 25 October 2021 [cited: July 10, 2024]. Available in: https://gca.org/wp-content/uploads/2022/08/GCA_STA_2021_Complete_website.pdf
Zhou W, Yu W, Wu T. An alternative method of developing landscape strategies for urban cooling: A threshold-based perspective. Landscape and Urban Planning [Internet]. 2022 [cited: July 10, 2024]; 225: 104449. Available in: https://doi.org/10.1016/j.landurbplan.2022.104449.
Kinnunen A, Talvitie I, Ottelin J, Heinonen J, Junnila S. Carbon sequestration and storage potential of urban residential environment – A review. Sustainable Cities and Society [Internet]. 2022 [cited: July 10, 2024]; 84(2016): 104027. Available in: https://doi.org/10.1016/j.scs.2022.104027.
González Couret D, Collado Baldoquín N, De la Paz Pérez GA, Rueda Guzmán LA. Urban variables for adaptation to global warming in a hot-humid climate. Cuban cities as a case study. Urban Climate [Internet]. 2023 [cited: July 10, 2024]; 51: 101633. Available in: https://doi.org/10.1016/j.uclim.2023.101633.
González Couret D, Morales Camacho LY, Collado Baldoquín N, Gelabert Abreu D, Rueda Guzmán LA. Tipos morfológios y microclima urbano en La Habana. Ecosolar [Internet]. 2023 [consultado: 10 de julio de 2024]; (83): 9-21. Disponible en: https://ecosolar.cubaenergia.cu/index.php/ecosolar/article/view/127/245.
Bregiatto de Oliveira PdS, Astigarraga R, Borelli G, Saiz PJ, Nader G. Consequences of verticalization. Paper presented at: PLEA 2015. Proceedings of the 31nd International Conference on Passive and Low Energy Architecture; 2015 Sep 9-11; Bologna, Italia. Available in: http://plea-arch.org/plea-proceedings/.
Collado Baldoquin N, González Couret D, Rueda Guzmán LA. Energy Retrofit of Traditional Buildings in a Warm-Humid Urbano Climate. In: Sayigh A, editor. Achieving Building Comfort by Natural Means. Luxembourg: Springer; 2022. pp. 451-483. Available in: https://doi.org/10.1007/978-3-031-04714-5.
Salvati A, Kolokotroni M. Microclimate Data for Building Energy Modelling: Study On ENVI-Met Forcing Data. Paper presented at: Building Simulation Conference. Proceedings of the 16th Conference of IBPSA; 2019 Sep 2-4; Rome, Italy. pp. 3361-3368. Available in: https://doi.org/10.26868/25222708.2019.210544.
McRae I, Freedman F, Rivera A, Li X, Dou J, Cruz I, et al. Integration of the WUDAPT, WRF, and ENVI-met models to simulate extreme daytime temperature mitigation strategies in San Jose, California. Building and Environment [Internet]. 2020 [cited: July 10, 2024]; 184: 107180. Available in: https://doi.org/10.1016/j.buildenv.2020.107180.
Deng C, Wu C. Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environent [Internet]. 2013 [cited: July 10, 2024]; (131): 262-274. Available in: http://dx.doi.org/10.1016/j.rse.2012.12.020.
Singh P, Kikon N, Verma P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable Cities and Society [Internet]. 2017 [cited: July 10, 2024]; 32: 100-114. Available in: http://dx.doi.org/10.1016/j.scs.2017.02.018.
Tsoka S, Tsikaloudaki K, Theodosiou T. Urban space’s morphology and microclimatic analysis: A study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy and Buildings [Internet]. 2017 [cited: July 10, 2024]; 156: 96-108. Available in: https://doi.org/10.1016/j.enbuild.2017.09.066.
Morille B, Musy M, Malys L. Preliminary study of the impact of urban greenery types on energy consumption of building at a district scale: Academic study on a canyon street in Nantes (France) weather conditions. Energy and Buildings [Internet]. 2016 [cited: July 10, 2024]; 114: 275-282. Available in: http://dx.doi.org/10.1016/j.enbuild.2015.06.030.
Nuruzzaman Md. Urban Heat Island: Causes, Effects and Mitigation Measures - A Review. International Journal of Environmental Monitoring and Analysis [Internet]. 2015 [cited: July 10, 2024]; 3(2): 67-73. Available in: https://doi.org/10.11648/j.ijema.20150302.15
Zhang X, Estoque RC, Murayama Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustainable Cities and Society [Internet]. 2017 [cited: July 10, 2024]; 32: 557-568. Available in: http://dx.doi.org/10.1016/j.scs.2017.05.005.
Perini K, Magliocco A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban Greening [Internet]. 2014 [cited: July 10, 2024]; 13(3): 495-506. Available in: http://dx.doi.org/10.1016/j.ufug.2014.03.003.
United States Environment Protection Agency. USA: US EPA. Climate Change and Heat Islands; february 16, 2022 [cited: July 10, 2024]. Available in: https://www.epa.gov/heatislands/climate-change-and-heat-islands.
Williams J. 7 ways to reduce the urban heat island effect. The Earthbound Report. WordPress.com; july 14, 2021 [cited: July 10, 2024]. Available in: https://earthbound.report/2021/07/14/5-ways-to-reduce-the-urban-heat-island-effect/.
Bloch S. The Problem With ‘Cool Pavements’: They Make People Hot. Bloomberg US Edition; October 3, 2019 [cited: July 10, 2024]. Available in: https://www.bloomberg.com/news/articles/2019-10-03/reflective-pavement-may-be-less-cool-than-it-seems.
Jamei E, Rajagopalan P, Seyedmahmoudian M, Jamei Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews [Internet]. 2016 [cited: July 10, 2024]; 54 (2016) 1002-1017. Available in: http://dx.doi.org/10.1016/j.rser.2015.10.104.
Bassi AM, Pallaske G, Wuennenberg L, Graces L, Silber L. Sustainable Asset Valuation Tool: Natural Infrastructure. Winnipeg: International Institute for Sustainable Development; 2019. Available in: https://www.iisd.org/system/files/publications/sustainable-asset-valuation-tool-natural-infrastructure.pdf.
Bechauf R, Cutler E, Bassi A, Casier L, Kapetanakis M, Pallaske G, et al. The Value of Incorporating Nature in Urban Infrastructure Planning. IISD Report. Winnipeg: International Institute for Sustainable Development; 2022. Available in: https://nbi.iisd.org/report/nature-in-urban-infrastructure-planning/.
González Couret D, Sánchez Martínez O. Towards a more resilient urban morphology in Havana. Paper presented at: PLEA 2016. Proceedings of the 32nd International Conference on Passive and Low Energy Architecture; 2016 Jul 11-13; Los Angeles, USA. Los Angeles: Pomona University; 2016. Available in: http://www.plea-arch.org/index.php/plea-proceedings/.
Yin S, Wang F, Xiao Y, Xue S. Comparing cooling efficiency of shading strategies for pedestrian thermal comfort in street canyons of traditional shophouse neighbourhoods in Guangzhou, China. Urban Climate [Internet]. 2022 [cited: July 10, 2024]; 43(2): 101165. Available in: https://doi.org/10.1016/j.uclim.2022.101165.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista científica de Arquitectura y Urbanismo

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
a. The authors retain the copyright and guarantee the magazine the right to be the first publication of the work as well as a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the authorship of the work and the initial publication in this magazine.
b. Authors may separately establish additional agreements for the non-exclusive distribution of the version of the work published in the journal (for example, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are allowed and encouraged to disseminate their work electronically (for example, in institutional repositories or on their own website) before and during the submission process, as it can lead to productive exchanges, as well as a more early and major published papers (See The Effect of Open Access, in English).