Adaptation of Urban Habitat to Global Warming in Havana. Transformation Proposals

Authors

  • Dania González-Couret Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.
  • Natalí Collado-Baldoquin Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.
  • Dayra Gelabert-Abreu Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.
  • Lázaro Yerandy Morales-Camacho Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.
  • Luis Alberto Rueda-Guzmán Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Keywords:

morphological types, thermal microclimate, adaptation to global warming, Havana

Abstract

This article presents the most recommended transformation strategies for a better adaptation to global warming according to the results of a research aimed at identifying, characterizing and evaluating the morphological types in Havana according to its thermal microclimate. Based on the theoretical framework developed in the first stage of the work, empirical research was conducted, allowing the identification of 27 morphological types in the city, of which 12 were selected for the development of 3 thermal environment monitoring campaigns. From the results, the morphological types were further classified into four large groups, according to their microclimatic behavior, as a basis for the identification of the main transformation strategies to be proposed in each case. The impact of some proposed solutions was simulated with ENVImet software, previously validated against the monitored values.

Author Biographies

Dania González-Couret, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Arquitecta. Doctora en Ciencias. Profesora Titular- Emérita, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Email: daniagcouret@gmail.com

https://orcid.org/0000-0002-1406-4588

Natalí Collado-Baldoquin, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Arquitecta. Doctora en Ciencias Técnicas. Profesora Auxiliar, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Email: colladobaldoquin@gmail.com

https://orcid.org/0000-0003-4248-9708

 

Dayra Gelabert-Abreu, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Arquitecta. Doctora en Ciencias Técnicas. Profesora Auxiliar, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Email: dayragelabert@gmail.com

https://orcid.org/0000-0002-7765-7217

Lázaro Yerandy Morales-Camacho, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Arquitecto. Profesor Asistente. Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Email: lyerandymc@gmail.com

https://orcid.org/0000-0001-5752-7696

Luis Alberto Rueda-Guzmán, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Arquitecto. Doctor en Ciencias Técnicas. Profesor Titular, Universidad Tecnológica de La Habana José Antonio Echeverría, Cujae. La Habana, Cuba.

Email: ruedaguz72@gmail.com

https://orcid.org/0000-0001-6549-3975

 

References

CEPAL (Comisión Económica para América Latina y el Caribe) / CAC-SICA (Consejo Agropecuario Centroamericano del Sistema de la Integración Centroamericana) (2020), Análisis espacial de datos históricos y escenarios de cambio climático en México, Centroamérica, Cuba, Haití y la República Dominicana. Ciudad de México: CEPAL; 2020. Disponible en: https://hdl.handle.net/11362/46499.

IPCC (Intergovernmental Panel on Climate Change). Climate Change 2022. Mitigation of Climate Change. Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available in: https://www.ipcc.ch/report/ar6/wg2/

Planos Gutiérrez EO. Informe: Tercera Comunicación Nacional a la Convención Marco de las Naciones Unidas sobre Cambio Climático. La Habana: CITMA / AMA; 2020,

ONU (Organización de Naciones Unidas) El futuro de la humanidad se juega en las ciudades. Noticias ONU [Internet]. 26 Febrero 2019 [consultado: 10 de julio de 2024]. Disponible en: https://news.un.org/es/story/2019/02/1451862.

Gilabert Mestre J. Cubiertas urbanas y comportamiento térmico en escenarios de temperaturas extremas del dato al geoservicio [tesis doctoral]. Barcelona: Universitat de Barcelona; 2021. Disponible en: https://dialnet.unirioja.es/servlet/tesis?codigo=304379.

Arellano Ramos B. Cambio climático, planeamiento y urbanismo. En: CTV XIII Congreso Internacional Ciudad y Territorio Virtual. Barcelona: Universitat Politècnica; 2019. Disponible en: https://revistes.upc.edu/index.php/CTV/article/view/9651.

Estrada F, Botzen WJW, Tol RSJ. A global economic assessment of city policies to reduce climate change impacts. Nature Climate Change [Internet]. 2017 [cited: month day, year]; 7(6): 403-406. Disponible en: https://doi.org/10.1038/nclimate3301.

Wouters H, De Ridder K, Poelmans L, Willems P, Browers J, Hosseinzadehtalaei P, et al. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophysical Research Letters [Internet]. 2017 [cited: July 10, 2024]; 44(17): 8997-9007. Disponible en: https://doi.org/10.1002/2017GL074889.

Sánchez Solís A. El calentamiento global afectará a las ciudades el doble que al campo. La Vanguardia. Sociedad. Cambio Climático [Internet]. 24 Abril 2017 [consultado: 10 de julio de 2024]. https://www.efe.com/efe/america/sociedad/el-calentamiento-global-afectara-a-las-ciudades-doble-que-al-campo/20000013-3246785

Ijjasz-Vasquez E, Saghir J, Noble I. State and Trends in Adaptation Report 2021 [Internet]. Global Center on Adaptation. 25 October 2021 [cited: July 10, 2024]. Available in: https://gca.org/wp-content/uploads/2022/08/GCA_STA_2021_Complete_website.pdf

Zhou W, Yu W, Wu T. An alternative method of developing landscape strategies for urban cooling: A threshold-based perspective. Landscape and Urban Planning [Internet]. 2022 [cited: July 10, 2024]; 225: 104449. Available in: https://doi.org/10.1016/j.landurbplan.2022.104449.

Kinnunen A, Talvitie I, Ottelin J, Heinonen J, Junnila S. Carbon sequestration and storage potential of urban residential environment – A review. Sustainable Cities and Society [Internet]. 2022 [cited: July 10, 2024]; 84(2016): 104027. Available in: https://doi.org/10.1016/j.scs.2022.104027.

González Couret D, Collado Baldoquín N, De la Paz Pérez GA, Rueda Guzmán LA. Urban variables for adaptation to global warming in a hot-humid climate. Cuban cities as a case study. Urban Climate [Internet]. 2023 [cited: July 10, 2024]; 51: 101633. Available in: https://doi.org/10.1016/j.uclim.2023.101633.

González Couret D, Morales Camacho LY, Collado Baldoquín N, Gelabert Abreu D, Rueda Guzmán LA. Tipos morfológios y microclima urbano en La Habana. Ecosolar [Internet]. 2023 [consultado: 10 de julio de 2024]; (83): 9-21. Disponible en: https://ecosolar.cubaenergia.cu/index.php/ecosolar/article/view/127/245.

Bregiatto de Oliveira PdS, Astigarraga R, Borelli G, Saiz PJ, Nader G. Consequences of verticalization. Paper presented at: PLEA 2015. Proceedings of the 31nd International Conference on Passive and Low Energy Architecture; 2015 Sep 9-11; Bologna, Italia. Available in: http://plea-arch.org/plea-proceedings/.

Collado Baldoquin N, González Couret D, Rueda Guzmán LA. Energy Retrofit of Traditional Buildings in a Warm-Humid Urbano Climate. In: Sayigh A, editor. Achieving Building Comfort by Natural Means. Luxembourg: Springer; 2022. pp. 451-483. Available in: https://doi.org/10.1007/978-3-031-04714-5.

Salvati A, Kolokotroni M. Microclimate Data for Building Energy Modelling: Study On ENVI-Met Forcing Data. Paper presented at: Building Simulation Conference. Proceedings of the 16th Conference of IBPSA; 2019 Sep 2-4; Rome, Italy. pp. 3361-3368. Available in: https://doi.org/10.26868/25222708.2019.210544.

McRae I, Freedman F, Rivera A, Li X, Dou J, Cruz I, et al. Integration of the WUDAPT, WRF, and ENVI-met models to simulate extreme daytime temperature mitigation strategies in San Jose, California. Building and Environment [Internet]. 2020 [cited: July 10, 2024]; 184: 107180. Available in: https://doi.org/10.1016/j.buildenv.2020.107180.

Deng C, Wu C. Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environent [Internet]. 2013 [cited: July 10, 2024]; (131): 262-274. Available in: http://dx.doi.org/10.1016/j.rse.2012.12.020.

Singh P, Kikon N, Verma P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable Cities and Society [Internet]. 2017 [cited: July 10, 2024]; 32: 100-114. Available in: http://dx.doi.org/10.1016/j.scs.2017.02.018.

Tsoka S, Tsikaloudaki K, Theodosiou T. Urban space’s morphology and microclimatic analysis: A study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy and Buildings [Internet]. 2017 [cited: July 10, 2024]; 156: 96-108. Available in: https://doi.org/10.1016/j.enbuild.2017.09.066.

Morille B, Musy M, Malys L. Preliminary study of the impact of urban greenery types on energy consumption of building at a district scale: Academic study on a canyon street in Nantes (France) weather conditions. Energy and Buildings [Internet]. 2016 [cited: July 10, 2024]; 114: 275-282. Available in: http://dx.doi.org/10.1016/j.enbuild.2015.06.030.

Nuruzzaman Md. Urban Heat Island: Causes, Effects and Mitigation Measures - A Review. International Journal of Environmental Monitoring and Analysis [Internet]. 2015 [cited: July 10, 2024]; 3(2): 67-73. Available in: https://doi.org/10.11648/j.ijema.20150302.15

Zhang X, Estoque RC, Murayama Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustainable Cities and Society [Internet]. 2017 [cited: July 10, 2024]; 32: 557-568. Available in: http://dx.doi.org/10.1016/j.scs.2017.05.005.

Perini K, Magliocco A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban Greening [Internet]. 2014 [cited: July 10, 2024]; 13(3): 495-506. Available in: http://dx.doi.org/10.1016/j.ufug.2014.03.003.

United States Environment Protection Agency. USA: US EPA. Climate Change and Heat Islands; february 16, 2022 [cited: July 10, 2024]. Available in: https://www.epa.gov/heatislands/climate-change-and-heat-islands.

Williams J. 7 ways to reduce the urban heat island effect. The Earthbound Report. WordPress.com; july 14, 2021 [cited: July 10, 2024]. Available in: https://earthbound.report/2021/07/14/5-ways-to-reduce-the-urban-heat-island-effect/.

Bloch S. The Problem With ‘Cool Pavements’: They Make People Hot. Bloomberg US Edition; October 3, 2019 [cited: July 10, 2024]. Available in: https://www.bloomberg.com/news/articles/2019-10-03/reflective-pavement-may-be-less-cool-than-it-seems.

Jamei E, Rajagopalan P, Seyedmahmoudian M, Jamei Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews [Internet]. 2016 [cited: July 10, 2024]; 54 (2016) 1002-1017. Available in: http://dx.doi.org/10.1016/j.rser.2015.10.104.

Bassi AM, Pallaske G, Wuennenberg L, Graces L, Silber L. Sustainable Asset Valuation Tool: Natural Infrastructure. Winnipeg: International Institute for Sustainable Development; 2019. Available in: https://www.iisd.org/system/files/publications/sustainable-asset-valuation-tool-natural-infrastructure.pdf.

Bechauf R, Cutler E, Bassi A, Casier L, Kapetanakis M, Pallaske G, et al. The Value of Incorporating Nature in Urban Infrastructure Planning. IISD Report. Winnipeg: International Institute for Sustainable Development; 2022. Available in: https://nbi.iisd.org/report/nature-in-urban-infrastructure-planning/.

González Couret D, Sánchez Martínez O. Towards a more resilient urban morphology in Havana. Paper presented at: PLEA 2016. Proceedings of the 32nd International Conference on Passive and Low Energy Architecture; 2016 Jul 11-13; Los Angeles, USA. Los Angeles: Pomona University; 2016. Available in: http://www.plea-arch.org/index.php/plea-proceedings/.

Yin S, Wang F, Xiao Y, Xue S. Comparing cooling efficiency of shading strategies for pedestrian thermal comfort in street canyons of traditional shophouse neighbourhoods in Guangzhou, China. Urban Climate [Internet]. 2022 [cited: July 10, 2024]; 43(2): 101165. Available in: https://doi.org/10.1016/j.uclim.2022.101165.

Published

2024-11-14

How to Cite

González-Couret, D., Collado-Baldoquin, N., Gelabert-Abreu, D., Morales-Camacho, L. Y., & Rueda-Guzmán, L. A. (2024). Adaptation of Urban Habitat to Global Warming in Havana. Transformation Proposals. Revista científica De Arquitectura Y Urbanismo, 45(2), 28–44. Retrieved from https://rau.cujae.edu.cu/index.php/revistaau/article/view/835