Low Energy and Material Housing? Crisis of the 90s in Cuba

Authors

  • Dania González Couret acultad de Arquitectura y Urbanismo. Universidad Tecnológica de La Habana José Antonio Echeverría, CUJAE. La Habana, Cuba

Keywords:

housing, energy consumption, building materials and technologies, costs

Abstract

Based on a comprehensive approach to the sustainability of construction technologies and materials, specifically during the use and exploitation stage, the article shows how far the so-called "Movement of low material and energy consumption housing", developed as a housing construction alternative during the crisis of the 90 in Cuba. This is part of an investigation on the evolution of housing in Cuba that allowed us to discover the best practices and prevent the possible repetition of errors. The evaluations were carried out according to the elaborated theoretical base, observation, measurement, interviews and surveys, the use of various calculation systems and analysis-synthesis processes. The important role of specific design solutions is demonstrated, as well as the erroneousness of the economic approaches in force at the time and that the houses that were built were large consumers of materials and energy with a very short useful life

Author Biography

Dania González Couret, acultad de Arquitectura y Urbanismo. Universidad Tecnológica de La Habana José Antonio Echeverría, CUJAE. La Habana, Cuba

Arquitecta. Doctora en Ciencias. Profesora Titular, Facultad de Arquitectura y Urbanismo.

Universidad Tecnológica de La Habana José Antonio Echeverría, CUJAE. La Habana, Cuba

E-mail: daniagcouret@gmail.com

https://orcid.org/0000-0002-1406-4588 

References

Ruiz G, Hernández E. Urbanización y edificación de bajo costo. Volumen III. Política de vivienda en Cuba. Documentos. (Vols. I – III) ONG Sur, INV, Cooperación Española,1998, . https://catalogo.bnphu.gob.do/cgi-bin/koha/opac-detail.pl?biblionumber=21029

Liang L, Wen B, Xu F, Yan J, Yan X, Ramesh S. Linking the Development of Building Sustainability Assessment Tools with the Concept Evolution of Sustainable Buildings. Sustainability 2021; 13, 12909. https://doi.org/10.3390/su132212909

Tshililo FP, Mutanga S, Sikhwivhilu K, Siame J, Hongoro Ch, Managa L R, et al. Analysis of the determinants of household’s water access and payments among the urban poor. A case study of Diepsloot Township. Physics and Chemistry of the Earth. 2022; 127:103183. https://doi.org/10.1016/j.pce.2022.103183

Kotus J, Rzeszewski M, Olejniczak A. Material and digital dimensions of urban public spaces through the lens of social distancing. Cities. 2022;130:103856. https://doi.org/10.1016/j.cities.2022.103856

Xiao Y, Chai J, Wanga R, Huang H. Assessment and key factors of urban liveability in underdeveloped regions: A case study of the Loess Plateau, China. 2022;79:103674. https://doi.org/10.1016/j.scs.2022.103674

Grygierek K, Ferdyn-Grygierek J, Guminska A, Baran L, Barwa M, Czerw K, et al. Energy and Environmental Analysis of Single-Family Houses Located in Poland. Energies. 2020; 13: 2740. https://dor.org10.3390/en13112740

Lechon Y, de la Rúa C, Lechon JI. Environmental footprint and life cycle costing of a family house built on CLT structure. Analysis of hotspots and improvement measures. Journal of Building Engineering. 2021;39:102239. https://doi.org/10.1016/j.jobe.2021.102239

Farias Simões G M, Leder S M. Energy poverty: The paradox between low income and increasing household energy consumption in Brazil. Energy & Buildings. 2022;268: 112234. https://doi.org/10.1016/j.enbuild.2022.112234

Bertheau P. Assessing the impact of renewable energy on local development and the Sustainable Development Goals: Insights from a small Philippine island. Technological Forecasting & Social Change. 2020;153:119919. https://doi.org/10.1016/j.techfore.2020.119919

Crawford R H, Bartak E L, Stephan A, Jensen Ch A. Evaluating the life cycle energy benefits of energy efficiency regulations for buildings. Renewable and Sustainable Energy Reviews. 2016;63:435–451. http://dx.doi.org/10.1016/j.rser.2016.05.061

Stephan A, Stephan L. Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings. Applied Energy. 2016;161:445–464. http://dx.doi.org/10.1016/j.apenergy.2015.10.023

Ajayi S O, Oyedele L O, Ilori O M. Changing significance of embodied energy: A comparative study of material specifications and building energy sources. Journal of Building Engineering. 2019;23:234-333. https://doi.org/10.1016/j.jobe.2019.02.008

Copiello S. Economic implications of the energy issue: Evidence for a positive non-linear relation between embodied energy and construction cost. Energy and Buildings. 2016;123:59–70. http://dx.doi.org/10.1016/j.enbuild.2016.04.054

Zeng R, Chini A. A review of research on embodied energy of buildings using bibliometric analysis. Energy and Buildings. 2017;155:172–184. http://dx.doi.org/10.1016/j.enbuild.2017.09.025

Madrid M, García Frómeta Y, Cuadrado J, Blanco J M. Análisis de ciclo de vida en bloques de hormigón: comparación del impacto producido entre bloques tradicionales y con subproductos. Informes de la Construcción. Vol. abril-junio 2022; 74(566):e438. https://doi.org/10.3989/ic.88125

Hossain M U, Ng S T. Critical consideration of buildings' environmental impact assessment towards adoption of circular economy: An analytical review. Journal of Cleaner Production 2018;205:763e780. https://doi.org/10.1016/j.jclepro.2018.09.120

Pomponi F, Moncaster A. Circular economy for the built environment: A research framework. Journal of Cleaner Production. 2017;143:710e718. http://dx.doi.org/10.1016/j.jclepro.2016.12.055

Cristiano S, Ghisellini P, D’Ambrosio G, Xue J, Nestic A, Gonella F, et al. Construction and demolition waste in the Metropolitan City of Naples, Italy: State of the art, circular design, and sustainable planning opportunities. Journal of Cleaner Production. 2021;293:125856. https://doi.org/10.1016/j.jclepro.2021.125856

Geldermans RJ. Design for change and circularity – accommodating circular material & product flows in construction. SBE16 Tallinn and Helsinki Conference; Build Green and Renovate Deep, 5-7 October 2016, Tallinn and Helsinki. Energy Procedia. 2016; 96:301–311. https://do.org/10.1016/j.egypro.2016.09.153

Ozarisoy B, Altan H. Systematic literature review of bioclimatic design elements: Theories, methodologies and cases in the South-eastern Mediterranean climate. Energy & Buildings. 2021;250:111281.https://doi.org/10.1016/j.enbuild.2021.111281

Mahdya M M, Nikolopoulou M. Evaluation of fenestration specifications in Egypt in terms of energy consumption and long term cost-effectiveness. Energy and Buildings, 2014;69:329–343. http://dx.doi.org/10.1016/j.enbuild.2013.11.028

Chenari B, Dias Carrilho J, Gameiro da Silva M. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews. 2016;59:1426–1447.http://dx.doi.org/10.1016/j.rser.2016.01.074

Çimen O. Construction and built environment in circular economy: A comprehensive literature review. Journal of Cleaner Production. 2021;305:127180. https://doi.org/10.1016/j.jclepro.2021.127180

Leising E, Quist J, Bocken N. Circular Economy in the building sector: Three cases and a collaboration tool. Journal of Cleaner Production. 2018;176:976e989. https://doi.org/10.1016/j.jclepro.2017.12.010

Sharif A A, Alshdiefat A S, Rana M Q, Kaushik A,Oladinrin O T. Evaluating social sustainability in Jordanian residential neighborhoods: a combined expert-user approach. City, Territory and Architecture. 2022;9:17. https://doi.org/10.1186/s40410-022-00162-5

Shahid M, Rana I A, Jamshed A, Najam F A, Ali A, Aslam A. Quantifying the role of social capital for enhancing urban resilience against climate crisis: Empirical evidence from formal and informal settlements of Pakistan. Cities. 2022;130:103851. https://doi.org/10.1016/j.cities.2022.103851

Carr M F, Kramer D B. Homeowners’ associations: Barriers or bridges to more sustainable residential development? Landscape and Urban Planning. 2022;224:104419. https://doi.org/10.1016/j.landurbplan.2022.104419

Asfour O S, Alshawaf E S. Effect of housing density on energy efficiency of buildings located in hot climates. Energy and Buildings. 2015;91:131–138. http://dx.doi.org/10.1016/j.enbuild.2015.01.030

Stephan A, Crawford R H, de Myttenaere K. Multi-scale life cycle energy analysis of a low-density suburban neighbourhood in Melbourne, Australia. Building and Environment. 2013; 68:35e49. http://dx.doi.org/10.1016/j.buildenv.2013.06.003

Nonomura A, Uehara Y, Masuda T, Tadono T. Impact of mid-high rise buildings on summer air temperatures in the coastal city of Takamatsu in southwestern Japan, Urban Climate. 2014;9:75–88. http://dx.doi.org/10.1016/j.uclim.2014.07.003

Norouzi M, Chafer M, Cabeza L F, Jimenez L, Boer D. Circular economy in the building and construction sector: A scientific evolution analysis. Journal of Building Engineering. 2021;44:102704. https://doi.org/10.1016/j.jpbe.2021.102704

Minunno R, O’Grady T, Morrison G M, Gruner R L. Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments. Renewable and Sustainable Energy Reviews. 2021;143:110935. https://doi.org/10.1016/j.rser.2021.110935

Lopez-Guerrero R E, Vera S, Carpio M A. Quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies. Renewable and Sustainable Energy Reviews. 2022;157:112034 https://doi.org/10.1016/j.rser.2021.112034

Carrazana Gómez R. Técnicas básicas de construcción. Editorial Científico Técnica, La Habana, 1974.

Minke G. Técnicas constructivas para proyectos de bajo costo con materiales locales. Revista Arquitectura y Urbanismo. 1994;15(2-3):33-44.

Pettersen G. Paz con la tierra. Revista Arquitectura y Urbanismo. 1995;15(2-3):59-64.

Amat E. y Alfonso A. Impermeabilidad y durabilidad de los muros de suelocemento. Revista Arquitectura y Urbanismo. 1994;15(2-3):71-76.

Flores Mola J. Edificaciones, Prefabricación tradicional y de avanzada. La Habana: Editorial Félix Varela; 2013. https://books.google.com.cu/books/about/Edificaciones_Prefabricaci%C3%B3n_Tradiciona.html?id=XplBvgAACAAJ&redir_esc=y

González Couret D. Economía y calidad en la vivienda. Un enfoque cubano. La Habana: Editorial Científico Técnica; 1997. https://bibliotecadigital.uchile.cl/discovery/fulldisplay/alma991005009029703936/56UDC_INST:56UDC_INST

Al Asali M W, González Couret D, Ramage M H. Beyond the National Art Schools: Thin-Tile Vaulting in Cuba after the Revolution. Journal of the Society of Architectural Historians. 2021;80(3):321-345. https://doi.org/10.1525/jsah.2021.80.3.321

ONU-Hábitat. Versión ejecutiva del perfil de la vivienda en Cuba. ONU-Hábitat, INV, COSUDE, La Habana, 2014. https://unhabitat.org/sites/default/files/2021/04/edited_version_ejecutiva_housing_profile_cuba_web.pdf

Sánchez Mora R. Viejos materiales, nuevas técnicas. Construcción y Tecnología, marzo 1990:7-13.

Rodríguez Rosales L, Meisimille Perdomo J. Uso del poliestireno expandido (poliespuma). Obras. Separata Técnica. Suplemento Especial, 2011:7-15.

Livingston R. El Método. Buenos Aires: Ediciones de la Urraca S. A; 1995.

Published

2023-09-12

How to Cite

González Couret, D. (2023). Low Energy and Material Housing? Crisis of the 90s in Cuba. Revista científica De Arquitectura Y Urbanismo, 44(2), 17–33. Retrieved from https://rau.cujae.edu.cu/index.php/revistaau/article/view/776